
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 943
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Semantic descriptions of resources with
proactive behavior of autonomous condition

monitoring applications
Gunjan Mishra, Diwakar Yagyasen

Abstract— The goal of the semantic web is to be “a web talking to machines”, i.e. in which machines can provide a better help to people
because they can take advantage of the content of the Web. The information on the web should thus be expressed in a meaningful way
accessible to computers. Semantic Web aims to improve upon the meaning, in machine-understandable terms, of information currently
available on the world-wide-web. This enables computers, in the form of autonomous software agents, to work with the wealth of world-
wide-web information more easily. Moreover, it enhances the human-computer co-operation by bringing the concept of human
understanding closer to the machine. Autonomous systems must be automatic and, in addition, they must have a capacity to form and
adapt their behaviour while operating in the environment. Thus traditional AI systems and most robots are automatic but not autonomous -
they are not fully independent from the control provided by their designers. Autonomous systems are independent and are able to perform
self-control.

Index Terms— Sementic web,web ontology language,sementic agent programming language,resourse description framework,sementic
web middleware,agent communication in S-APL,proactive future internet

—————————— ——————————

1 INTRODUCTION
he contribution of the ongoing Smart Resource project (2004

to 2006), together with appropriate research effort, includes
prototype implementation of distributed Semantic Web ena-
bled maintenance management environment with complex
interactions of components, which are devices, humans (ex-
perts, operators), and remote diagnostic Web services. The
environment will provide automatic discovery, integration,
condition monitoring, remote diagnostics, and cooperative
and learning capabilities of the heterogeneous resources to
deal with maintenance problems. Maintenance (software)
agents will be added to industrial devices, which are assumed
to be interconnected in a decentralized peer-to-peer network
and which can integrate diagnostic services in order to in-
crease the maintenance performance for each individual de-
vice. The maintenance case is expected to demonstrate the
benefits and possibilities of a new resource management
framework and Semantic Web technology in general. An ap-
proach to that case harnesses the potential of emerging pro-
gressive technologies, such as Semantic Web, agent technolo-
gy, machine learning, Web services, and peer-to-peer.

2 PROPOSED MODEL
The common goal of the middleware development initiatives
is to develop a framework which provides a platform to se-
mantic resources with proactive behaviour in autonomous
condition monitoring applications. The middleware describe
that the semantic web has a large capability to establish a con-
nection between software agent and the internet. The middle-
ware(fig.1) is like a platform to provide semantic web recours-
es easily handle by the user. In this paper the middleware is
divided into three main component which is describe below-
• Semantic Web Middleware
• Semantic Agent Programming Language

• Agent communication in S-APL
• PROFI: Proactive Future Internet

SEMENTIC WEB
MIDDLEWARE

SEMENTIC AGENT
PROGRAMMING LANGUAGE

AGENT COMMUNICATION IN S-APL

PROFI:PROACTIVE FUTURE INTERNET

Functional Components of Sementic Web Middleware

Figure 1:functional components of sementic
web middleware

2.1 Semantic Web Middleware

 Semantic web middleware consist of resource descrip-
tion framework (RDF) and web ontology language
(OWL) which provides a better enabling platform for the

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 944
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

semantic resources treated as proactive. The semantic
web middleware regarding to role of RDF and OWL is
describe below:

2.1.1 Resource Description Framework (RDF)

 The Resource Description Framework (RDF) is an
XML-based language for describing information con-
tained in a Web resource. A resource can be a Web page,
an entire Web site, or any item on the Web that contains
information in some form. RDF enables the encoding,
exchange, and reuse of structured metadata. It allows for
metadata interoperability through the design of mecha-
nisms that support common conventions of semantics,
syntax, and structure. RDF makes no assumption about
a particular application domain, nor defines the seman-
tics of any particular application domain. The definition
of the mechanism is domain neutral, yet the mechanism
is suitable for describing information about any domain.
RDF can be used in a variety of application areas includ-
ing:

• Resource Discovery - RDF will enable search engines
to more easily discover resources on the Web.

• Cataloging - RDF will enable users to better describe
the content and content relationships available at a
particular Web site, page, or digital library.

• Intelligent Software Agents -RDF will facilitate
knowledge sharing and exchange, and allow software
agents to more intelligently find, filter and merge da-
ta.

• Content Rating - RDF will allow content to be rated.
• Intellectual Property Rights - RDF will allow users to

more easily express and enforce intellectual property
rights of Web sites.

• Privacy Preferences and Privacy Policies - RDF will al-
low users and Web sites to express privacy prefer-
ences and site-wide privacy policies that can be inter-
preted by applications.

• Digital Signatures - RDF will be a key to building the
“Web of Trust” for e-commerce, collaboration, and
other applications.

2.1.2 Web Ontology Language (OWL):
OWL is an ontology language for the Web. It became a World
Wide Web Consortium (W3C) Recommendation1 in Febru-
ary 2004. As such, it was designed to be compatible with the
eXtensible Markup Language (XML) as well as other W3C
standards. In particular, OWL extends the Resource Descrip-
tion Framework (RDF) and RDF Schema, two early Semantic
Web standards endorsed by the W3C. Syntactically, an OWL
ontology is a valid RDF document and as such also a well-
formed XML document. This allows OWL to be processed by
the wide range of XML and RDF tools already available.
OWL provides three increasingly expressive sublanguages
designed for use by specific communities of implementers and

users.
• OWL Lite

Supports those users primarily needing a classifica-
tion hierarchy and simple constraints. For example,
while it supports cardinality constraints, it only per-
mits cardinality values of 0 or 1. It should be simpler
to provide tool support for OWL Lite than its more
expressive relatives, and OWL Lite provides a quick
migration path for thesauri and other taxonomies.
Owl Lite also has a lower formal complexity than
OWL DL, see the section on OWL Lite in the OWL
Reference for further details.

• OWL DL
 Supports those users who want the maximum ex-
pressiveness while retaining computational com-
pleteness (all conclusions are guaranteed to be com-
putable) and decidability (all computations will finish
in finite time). OWL DL includes all OWL language
constructs, but they can be used only under certain
restrictions (for example, while a class may be a sub-
class of many classes, a class cannot be an instance of
another class). OWL DL is so named due to its corre-
spondence with description logics, a field of research
that has studied logics that form the formal founda-
tion of OWL.

• OWL Full
It is meant for users who want maximum expressive-
ness and the syntactic freedom of RDF with no com-
putational guarantees. For example, in OWL Full a
class can be treated simultaneously as a collection of
individuals and as an individual in its own right.
OWL Full allows an ontology to augment the mean-
ing of the pre-defined (RDF or OWL) vocabulary. It is
unlikely that any reasoning software will be able to
support complete reasoning for every feature of OWL
Full.

2.2 Semantic Agent Programming Language:
S-APL has as an axiom that anything inside an agent’s mind is
a belief [14]. All other mental attitudes such as goals, commit-
ments, behavioral rules are just compound beliefs. Thus, an S-
APL document is basically a statement of some agent’s current
or expected (by an organization) beliefs. S-APL is based on
Notation3 (N3)[15] and utilizes the syntax for rules very simi-
lar to that of N3Logic[16]. N3 was proposed as a more com-
pact, better readable and more expressive alternative to the
dominant notation for RDF, which is RDF/XML. One special
feature of N3 is the concept of formula that allows RDF graphs
to be quoted within RDF graphs, e.g. {:room1 :hasTemperature
25} :measuredBy :sensor1. An important convention is that a
statement inside a formula is not considered as asserted, i.e.,
as a general truth. In a sense, it is a truth inside a context
defined by the statement about the formula and the outer for-
mulas. In S-APL, we refer to formulae as context containers.
The top level of the S-APL document, i.e. of what is the gen-
eral truth for the agent, we refer to as general context or just G.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 945
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Below, we describe the main constructs of S-APL. We use
three namespaces:”sapl:” for S-APL constructs, ”java:” for
RABs, and ”p:” for RAB parameters. The empty namespace”:”
is used for resources that are assumed to be defined elsewhere.
The two constructs below are equivalent and define a simple
belief. The latter is introduced for syntactic reasons.
:room1 :hasTemperature 25
{:room1 :hasTemperature 25} sapl:is sapl:true
The next two constructs add context information:
{:room1 :hasTemperature 25} :measuredBy :sensor1
{:room1 :hasTemperature 25} sapl:is sapl:true ;
:measuredBy :sensor1

The former states that”sensor1 measured the temperature to
be 25” without stating that ”the agent believes that the tem-
perature is 25”. In contrast, the latter states both. This demon-
strates a specific convention of S-APL: rather than doing sev-
eral statements about one container,”{...} P O; P O” leads to
linking the statements inside the formula to two different con-
tainers. Then, using sapl:true it is also possible to link some
statements to a container and to one of its
nested containers.
The goals of the agent and the things that the agent believes to
be false are defined, correspondingly, as:

sapl:I sapl:want {:room1 :hasTemperature 25}
{:room1 :hasTemperature 25} sapl:is sapl:false

2.3 Agent communication in S-APL
IEEE FIPA developed a set of standard specifications for agent
communication including ACL for message envelopes and SL
for contents [17]. While the standard position of ACL is un-
questionable, the value of SL is less certain. Although mean-
ing”semantic language”, SL is not based on W3C’s RDF se-
mantic data model. Rather, SL follows the traditional agent
design approaches where the agents’ beliefs and thus also the
atoms of their communications are nary predicates. However,
N-ary predicates do not make the meaning of data as explicit
as RDF triples do. Also, only the whole message can be linked
to an ontology, as compared to the ability of RDF to link every
individual resource to its own ontology, if needed.
 In this section, we describe how we use S-APL as the
content language in agent communications. Since one of the
important communicative actions is querying for information,
this role of S-APL overlaps with that of SPARQL. The problem
with SPAQRL is that while being a language for querying
RDF, it is not RDF itself. Also obviously, a content language
for agent communication must support other types of com-
municative actions, for example, request for action. For these
reasons we did not consider using SPARQL as such. Rather,
when designing S-APL we included into it features analogous
to most of the SPARQL’s
ones.
 The beliefs storage of an S-APL agent can be queried ex-
ternally by other agents, of course subject to security and other
policies. The core of a query is the same as if the agent itself
would query its beliefs to check the premises of a rule. The

core of the query has to be wrapped with sapl:I sapl:want {
{sapl:You sapl:answer {..query..} } }. The use of ”sapl:I
sapl:want” may look unnecessary. However, this allows dis-
tinguishing between sapl:I sapl:want {...} and e.g. :Boss
sapl:want {...}, i.e. mediating a wish of another agent. Both
cases may require exactly the same action to be taken, howev-
er, may affect differently on whether the agent will comply or
not.
 As the response, the agent is to send the match-
ing part of its belief storage, or, if no match, the query itself
wrapped with sapl:I sapl:doNotBelieve {...}. Below, we list two
small S-APL programs that an agent has to load in order to be
able to be queried this way. The first one, Listener.sapl, in-
structs the agent to continuously wait for incoming messages
marked with”SAPL” ontology. The additional rule of the pro-
gram adds for every incoming request an additional ex-
istsWhile statement so that the request is removed after 5 se-
conds if no rule has taken it for processing.
/*Listener.sapl*/
{sapl:Isapl:dojava:ubiware.shared.MessageReceiverBehavior}
sapl:configuredAs {p:matchOntology sapl:is "SAPL".
p:waitOnlyFirst sapl:is false}.
{{{?requestID p:received *} sapl:ID ?id. sapl:Now sapl:is ?time.
sapl:I sapl:doNotBelieve
{?x sapl:existsWhile *. ?x sapl:hasMember ?id}
} => {
{?id sapl:is sapl:true} sapl:existsWhile
{sapl:Now sapl:is ?newtime. ?newtime < ?time+5000}}
} sapl:is sapl:Rule

2.4 PROFI: Proactive Future Internet
Big industrial players involved in the Future Internet technol-
ogy area are interested in seeing Future Internet platform self-
manageable, in particular, in the aspects of optimization,
maintenance, performance management, and re-
configuration[21]. The PROFI technological concept (as further
elaboration of the SmartResource, and UBIWARE [18] con-
cepts developed by the Industrial Ontologies Group) is seen as
a promising approach to cope with self-manageability prob-
lem in its versatility. As systems (inter alia networking) be-
come increasingly complex, traditional solutions to manage
and control them reach their
limits and pose a need for bringing self-configuration and\
self-management aboard. Also, heterogeneity of the ubiqui-
tous components, communication standards, data formats,
networking protocols, etc., creates significant hassles for in-
teroperability in such complex systems. The promising tech-
nologies to tackle these problems are the SemanticWeb for
interoperability, and Software Agents for management of
complex systems.
 The major PROFI objective is to provide the basis
for such future Internet overlay architecture that will integrate
autonomous (self-managed) proactive programmable Internet
components. To achieve that, a specialized agent-driven mid-
dleware platform [19] is to be designed. It is envisioned that
each future Internet programmable component, e.g., host,
router, edge cluster, edge node, etc. (terms are taken from the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 946
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

GENI vision [20]) will be assigned a representative agent with-
in PROFI. The resulting multi-agent system will be the core of
the targeted future Internet overlay architecture for enabling
flexibility, adaptability, self configurability and self-
management of the future Internet infrastructure. Utilization
of semantic technologies in PROFI will ensure efficient and
autonomous coordination among PROFI agents and will thus
bring another dimension to interoperability of future Internet
components and entities.
 Also, Future Internet Upper Ontology will be de-
signed as an important asset contributing to interoperability
realization within Future Internet platform. FI Upper Ontolo-
gy will be used not only for the benefit of PROFI middleware
architecture, but also and most importantly for facilitation of
interoperability and integration of existing and new future
components and solutions. This implies that FI Ontology will
also be used to cope with problems other than specific PROFI
issues, such as naming and addressing, interoperability and
integration, security, privacy and trust on the scale of the en-
tire future Internet architecture. The PROFI will enable vari-
ous information and networking components to automatically
discover each other and to configure a complex system func-
tionally composed of the individual components’ functionali-
ties.
 PROFI can be considered as an engine for declara-
tive networking. PROFI will enhance available declarative
networking languages by adding to them explicit semantics
(according to the W3C standards) specified in the ontological
format. Our Semantic Agent Programming Language (S-APL),
which is an RDF-based language for declarative programming
of proactive components, can be utilized within the PROFI
platform. S-APL is suitable for semantic descrip-
tion/annotation of various physical (e.g., network compo-
nents, devices, etc.) and virtual (e.g., informational facts, rules,
policies, commitments, individual and collaborative behav-
iors, etc.) resources. In S-APL, there is no strict separation be-
tween the data (descriptive knowledge) and program code
(behavioral knowledge). S-APL is assumed to be used both as
the programming language (for specification of network com-
ponents behavior) and a communication\ content language
(among architectural components). The syntax for RDF used
in S-APL is one of Notation3\ (N3), which is more compact
than RDF/XML. S-APL is a hybrid of semantic rule-based rea-
soning engines such as CWM
(http://www.w3.org/2000/10/swap/doc/cwm) and agent
programming languages (APLs). From the semantic reasoning
point of view, S-APL is CWM extended with common APL
features such as the Beliefs-Desires- Intentions architecture,
which implies an ability to describe goals and commitments
among the overlay architectural components – data items
presence of which leads to some executable behavior, and an
ability to link to sensors and actuators implemented in a pro-
cedural language. From the APL point of view, S-APL is a lan-
guage that has all the features (and more) of a common APL,
while being RDF-based and thus providing advantages of se-
mantic data model and reasoning. S-APL introduces the se-
mantic cognitive agent architecture, which has three layers:

the toplevel Behavior Engine, the middle-level S-APL storage,
and the bottom-level Reusable Atomic Behaviors (RABs) and
the blackboard (for non-semantic data). The architecture also
enables agents to access both S-APL programs/data and RABs
from remote repositories.

3 Semantic descriptions of resources with Pro-
active behavior of autonomous condition moni-
toring applications
Our intention is to make industrial devices (as well as other
Semantic Web Resources) proactive in a sense that they can
analyze their state independently from other systems and ap-
plications, initiate and control own maintenance proactively.
 The main idea of the new approach is that a soft-
ware agent is assigned to each word of text under considera-
tion with the help of semantic web middleware. Agents have
access to a comprehensive repository of knowledge about pos-
sible meaning of words in the text and engage into negotiation
with each other until a consensus is reached on meanings of
each word and each sentence. To simplify the process of ex-
tracting meanings, the method performs an initial morpholog-
ical and syntactic analysis of text.
 Web Services should be able to interpret the information
that they receive. Autonomous Web Services not only mini-
mize the human intervention by automating interaction with
other Web Services, allowing programmers to concentrate on
application development, but also are able to recover from
failures more efficiently by automatically reconfiguring their
interaction patterns.

4 CONCLUSION
In this paper we have proposed an enhancement in middle-
ware architecture for enabling flexible, autonomous interac-
tion between Semantic WS and agent services. We have also
highlighted the technologies and how they come together in
order to achieve the whole process. For now we have consid-
ered the semantic web middleware where an agent negotiates
with the web service. An initial implementation of this archi-
tecture has been done and we intend to improve the proposed
design so as to cater more negotiation protocols especially, the
auction protocols in future. We expect that this initial effort of
conducting negotiation via Gateway service bridging agents
and WS is only a prelude to exploring the immense potential it
offers as a means to compose, invoke, administer and manipu-
late heterogeneous service populations in future.

 ACKNOWLEDGMENT
I would like to acknowledge the ongoing support of my par-
ents and my family members, whose patience and encour-
agement during these long days and night have been para-
mount in making this research paper a reality.
References
[1] Ermolayev, V., Keberle, N., Plaksin, S., Kononenko, O., & Terziyan, V.
(2004). Towards a framework for agent-enabled semantic Web service
composition.
[2] Kaikova, H., Khriyenko, O., Kononenko, O., Terziyan, V., & Zharko, A.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 947
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

(2004).
Proactive self-maintained resources in Semantic Web. Eastern-European
Journal of Enterprise Technologies, 2(1), 4-16.
[3] Khriyenko, O., & Terziyan, V. (2004, June 24-26). OntoSmartResource:
An industrial
resource generation in semantic Web. In R. Schoop, A. Colombo, R. Ber-
hardt,& G. Schreck (Eds.), Proceedings of the Second IEEE International
Conference on Industrial Informatics (INDIN ’04), Berlin, Germany (pp.
175-179).
[4] METEOR-S: Semantic Web Services and processes. (2005). LSDIS Lab,
University of Georgia. Retrieved from http://lsdis.cs.uga.edu/ and
http://swp.semanticweb.
Org
[5] Semantic Web Services Initiative/Semantic Web Services Architecture.
(2005).
Retrieved from http://www.daml.org/services/swsa
[6] T. Berners-Lee, Notation 3: An RDF language for the semantic web.
Tech. rep.,
WorldWideWeb Consortium (W3C), 2000.
[7] Z. Ding, Y. Peng, R. Pan, Y. Yu, A Bayesian methodology towards au-
tomatic ontology mapping, in:Workshop on Context & Ontologies, Twen-
tieth Conference on
Artificial Intelligence (AAAI), 2005.
[8] A. Doan, A. Halevy, Semantic integration research in the database
community,
a brief survey, AI Magazine 26 (1) (2005) 83–94.
[9] A. Doan, J. Madhavan, P. Domingos, A. Halevy, Learning to map be-
tween ontologies on the semantic web, in:WorldWideWeb, ACMPress,
2002, pp. 662–673.

[10] The DAML Services Coalition. DAML-S: A Semantic Markup For
Web Services, http://www.daml.org/services/daml-s/2001/10/daml-
s.pdf.
[11] Ankolekar, A., Huch, F. and Sycara, K. Concurrent Execution Seman-
tics for DAML-S with Subtypes. In The First International Semantic Web
Conference (ISWC), 2002.
[12] McIlraith, S.A., Son, T.C. and Zeng, H. Mobilizing the Semantic Web
with DAMLEnabled Web Services. In Semantic Web Workshop, 2001.
[13] Agent-based information services for process automation
http://automation.tkk.fi/files/proage/
[14] http://www.cs.jyu.fi/ai/papers/ICSC-2008.pdf
[15] T. Berners-Lee. Notation 3: A readable language for data on the Web.
Online:
http://www.w3.org/DesignIssues/Notation3.html.
[16] T. Berners-Lee, D. Connoly, L. Kagal, Y. Scharf, and J. Hendler.
N3Logic: A logical framework for the World Wide Web. Theory and Prac-
tice of Logic Programming, 8(3):249–269, 2008.
[17] Foundation for Intelligent Physical Agents. Agent Communication
Specifications. Online: http://www.fipa.org/repository/aclspecs.html.
[18] University of Jyväskylä. UBIWARE: Smart Semantic Middleware for
Ubiquitous Computing. Online:
http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_details.htm.
[19] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan.
Smart semantic middleware for the internet of things. In Proc. 5th Intl.
Conf. Informatics in Control, Automation and Robotics (ICINCO’08),
Volume ICSO, pages 169–178, 2008.
[20] GENI. Global Environment for Network Innovations. Online:
http://geni.net/.
[21] Proactive Future Internet: Smart Semantic Middleware for Overlay
Architecture Vagan Terziyan, Dmytro Zhovtobryukh, and Artem Ka-
tasonov

IJSER

http://www.ijser.org/
http://www.daml.org/services/daml-s/2001/10/daml-s.pdf
http://www.daml.org/services/daml-s/2001/10/daml-s.pdf
http://automation.tkk.fi/files/proage/
http://www.cs.jyu.fi/ai/papers/ICSC-2008.pdf
http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_details.htm

	1 Introduction
	4 CONCLUSION

	Acknowledgment

